CAAP Statistics Final Review

Aug 9, 2022

Topics Overview

- Introduction to data: Observational vs Experimental
- Summarizing data: Numerical vs Categorical
- Probability: Law of Large Numbers
- Distribution: Normal, Bernoulli, Binomial, Poisson
- Foundations for Inference: Central Limit Theorem
- Inference for Numerical Data: When to use t-distribution?
- Inference for Categorical Data
- Introduction to Linear Regression
 - Residuals = observed fitted
 - Types of Outliers
 - $\circ~$ Inference for the slope H_0 : $\beta_1=0$

Introduction to Data

- What is Sampling? Sample vs. Population
- Observational Data
 - Random Sampling(Simple random sampling, cluster sampling, stratified sampling...)
- Experimental Data
 - Random Assignment
 - Treatment vs. Control
- Causation vs Correlation

Summarizing Data

- Graphical Summary
 - Scatterplot
 - Histogram
 - Boxplot
 - Barplot
- Numerical Summary
 - Mean, variance
 - Q1, Q3, IQR
 - Median

Probability

- Definition of Probability
 - Frequentist vs Bayesian
 - Law of Large Numbers
- Probability Distribution
 - Independent vs Disjoint vs Complement
 - Product Rule: $P(A \cap B) = P(A) \times P(B)$
 - Addition Rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Sampling with, without replacement
- Random Variables
 - Expectation, Variance

Distributions

- Normal Distribution
 - Continuous
 - Unimodal, symmetric and bell-shaped
- Bernoulli Distribution
 - Discrete
 - Binary outcome: 1(success), 0(failure)
- Binomial Distribution
 - Discrete
 - Sum of independent Bernoulli trials
- Poisson distribution
 - Discrete
 - Number of rare events in a unit amount of time

Foundations for Statistical Inference

- Central Limit Theorem
 - Sample mean/proportion follows normal distribution as the sample size increases
 - Law of Large Numbers: sample mean/proportion approaches population mean/proportion as the sample size increases
- Null hypothesis vs. Alternative hypothesis
- P-value: probability of having more extreme value than the observed value under null distribution
- Type I error vs. Type II error

Review of Hypothesis Testing

1. Set the Hypotheses

 $H_0: \mu = \mu_0$

 $H_A: \mu \neq \mu_0 \text{ or } H_A: \mu < \mu_0 \text{ or } H_A: \mu > \mu_0$

- 2. Check assumptions/conditions
 - Independence
 - Normality
 - The distribution is normally distributed
 - Sample size is large enough that we can apply CLT
- 3. Calculate a test-statistic and a p-value

$$z = \frac{\bar{x} - \mu_0}{SE}$$
 where $SE = \sigma/\sqrt{n}$

- 4. Make a decision
 - If p-value < α , reject H_0
 - If p-value > α , do not reject H_0

Inference for Numerical Data

- Normality condition
 - If the population distribution is normal, CLT, which states that sampling distributions will be nearly normal, hold true for *any* sample size.
 - If the sample size is large enough, by CLT, the sampling distributions will be nearly normal.
 - What if the sample size is **small? t-distribution**
- One sample mean with t-test
- Paired t-test: When to use?
- Differences in two means

Inference for Categorical Data

- Proportion is a special case of mean— the only difference is the formula for the standard error
- Test for one proportion
- Differences in two proportions
 - Think of Malaria Vaccine example

Introduction to Linear Regression

- Line Fitting, Residuals and Correlation
 - $\hat{y} = b_0 + b_1 x$
 - Residuals = Observed(y) Fitted(\hat{y})
 - Assumptions: Linearity, Normality, Constant variance
- Fitting a line by Least Squares Regression
 - Idea: want to minimize the sum of squared residuals
- Types of outliers in Linear Regression
 - Outliers, High leverage point
 - Influential point
- Inference for Linear Regression
 - Hypothesis testing for the slope: $H_0: \beta_1 = 0$

Thank you!