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● Normal Distribution:  
● To model most of the numerical variables 
● Symmetric, Unimodal, Bell-shaped curve 
● Normal probability using `pnorm` 
● Normal percentile using `qnorm` 

● Bernoulli Distribution:  
● 2 possible outcomes: success OR failure 

● Binomial Distribution:  
● To model the number of success out of n trials 
● Independent sum of Bernoulli trials 
● Normal Approximation when n is large enough 

● Poisson distribution:  
● To model the number of rare event in a give unit of time

N(μ, σ)

Ber(p)

Bin(n, p)

Poi(λ)

Review: Distributions of Random 
Variable



Learning Objectives

● Point estimates and sampling variability 
● What is sampling distribution 
● Central Limit Theorem 

● Confidence intervals for a proportion 
● Interpreting the confidence interval 

● Hypothesis testing for a proportion 
● Null hypothesis vs. Alternative hypothesis 
● Decision Error(Type I error, Type II error)



Point Estimates 
and Sampling Variability 



● We are often interested in population parameters. 
● Since complete populations are difficult (or impossible) to collect data 

on, we use sample statistics as point estimates for the unknown 
population parameters of interest. 

● Sample statistics vary from sample to sample. 
● Quantifying how sample statistics vary provides a way to estimate the 

margin of error associated with our point estimate. 
● But before we get to quantifying the variability among samples, let's 

try to understand how and why point estimates vary from sample to 
sample.

Parameter—a.k.a a quantity of Interest—
estimation



Suppose we randomly sample 1,000 adults from each state in the US. 
Would you expect the sample means of their heights to be the same, 
somewhat different, or very different?



Suppose we randomly sample 1,000 adults from each state in the US. 
Would you expect the sample means of their heights to be the same, 
somewhat different, or very different?

Not the same, but only somewhat different.



Suppose the proportion of American adults who support the expansion of solar 
energy is p = 0.88, which is our parameter of interest. Is a randomly selected 
American adult more or less likely to support the expansion of solar energy?



Suppose the proportion of American adults who support the expansion of solar 
energy is p = 0.88, which is our parameter of interest. Is a randomly selected 
American adult more or less likely to support the expansion of solar energy?

More likely.



Suppose that you don’t have access to the population of all American adults, which is 
a quite likely scenario. In order to estimate the proportion of American adults who 
support solar power expansion, you might sample from the population and use your 
sample proportion as the best guess for the unknown population proportion.

● Sample, with replacement, 1000 American adults from the population, 
and record whether they support solar power or not expansion. 

● Find the sample proportion. 
● Plot the distribution of the sample proportions obtained by members of 

the lass.



library(ggplot2) 
 
# 1. Create a set of 250 million entries, where 88% of  
# them are "support" and 12% are "not".  
 
pop_size <- 250000000 
possible_entries <- c(rep("support", 0.88 * pop_size), 
                      rep("not", 0.12 * pop_size)) 
 
# 2. Sample 1000 entries without replacement.  
 
sampled_entries <- sample(possible_entries, size = 1000) 
 
# 3. Compute p-hat: count the number that are "support",  
# then divide by # the sample size.  
 
res = data.frame(phat = rep(0,100)) 
set.seed(2022) 
for(i in 1:500){ 
  sampled_entries <- sample(possible_entries, size = 1000) 
  res[i,] = sum(sampled_entries == "support") / 1000 
}



Suppose you were to repeat this process many times and plot the results. 
What you just constructed is called a sampling distribution.

Sampling distribution



What is the shape and center of this distribution?

Sampling distribution

The distribution looks 
symmetric and somewhat 
bell-shaped. 



Based on this distribution, what do you think is the true population 
proportion?

Sampling distribution

The center of the distribution: 
about 0.88. 



● In real-world applications, we never actually observe the sampling 
distribution, yet it is useful to always think of a point estimate as 
coming from such a hypothetical distribution. 

● Understanding the sampling distribution will help us characterize and 
make sense of the point estimates that we do observe.

Sampling distributions are never observed



Sample proportions will be nearly normally distributed with mean equal to 
the population proportion, p, and standard error equal to 

It wasn’t a coincidence that the sampling distribution we saw earlier was 
symmetric, and centered at the true population population. 

We won’t go through a detailed proof of why 

but note that as n increases SE decreases. 
● As n increases samples will yield more consistent p̂s, 

i.e. variability among p̂s will be lower.

Central Limit Theorem



Certain conditions must be met for the CLT to apply:

CLT - conditions

Sample size 
There should be at least 10 expected successes and 10 expected failures 
in the observed sample. 
This is difficult to verify if you don’t know the population proportion (or can’t 
assume a value for it). In those cases we look for the number of observed 
successes and failures to be at least 10.

Independence 
Sampled observations must be independent. This is difficult to verify, but is 
more likely if 
● random sampling/assignment is used, and 
● if sampling without replacement, n < 10% of the population.



When p is unknown

The CLT states 

with the condition that np and n(1 − p) are at least 10. 

However, we often don’t know the value of p, the population proportion. 
In these cases we substitute p̂ for p.



When np or n(1 - p) is small

Suppose we have a population where the true population proportion is p = 
0.05, and we take random samples of size n = 50 from this population. We 
calculate the sample proportion in each sample and plot these 
proportions. Would you expect this distribution to be nearly normal? Why, 
or why not? 

No, the success-failure condition is not met (50 x 0.05 = 2.5), so we would 
not expect the sampling distribution to be nearly normal.



What happens when np and/or n(1 − p) < 10



● When either np or n(1 − p) is small, the distribution is more discrete. 

● When np or n(1 − p) < 10, the distribution is more skewed. 

● The larger both np and n(1 − p), the more normal the distribution. 

● When np and n(1 − p) are both very large, the discreteness of the 
distribution is hardly evident, and the distribution looks much more like 
a normal distribution.

When the conditions are not met...



The strategy of using a sample statistic to estimate a parameter is quite 
common, and it’s a strategy that we can apply to other statistics besides a 
proportion. 

● Take a random sample of students at a college and ask them how 
many extracurricular activities they are involved in to estimate the 
average number of extra curricular activities all students in this college 
are interested in. 

The principles and general ideas are from this chapter apply to other 
parameters as well, even if the details change a little.

Extending the framework for other statistics



The following histogram shows the distribution of number of drinks it takes 
a group of college students to get drunk. We will assume that this is our 
population of interest. If we randomly select observations from this data 
set, which values are most likely to be selected, which are least likely?

Practice



What you just constructed is called a sampling distribution.

Sampling distribution



What you just constructed is called a sampling distribution. 

What is the shape and center of this distribution? Based on this 
distribution, what do you think is the true population average?

Sampling distribution



What you just constructed is called a sampling distribution. 

What is the shape and center of this distribution? Based on this 
distribution, what do you think is the true population average? 

Approximately 5.39, the true population mean.

Sampling distribution



● It wasn't a coincidence that the sampling distribution we saw earlier 
was symmetric, and centered at the true population mean. 

● We won't go through a detailed proof of why SE = σ / √n, but note that 
as n increases SE decreases.  
○ As the sample size increases we would expect samples to yield 

more consistent sample means, hence the variability among the 
sample means would be lower.

The distribution of the sample mean is well approximated by a normal 
model:

Central Limit Theorem

where SE is represents standard error, which is defined as the standard 
deviation of the sampling distribution. If σ is unknown, use s.



CLT - conditions
Certain conditions must be met for the CLT to apply: 

Independence: Sampled observations must be independent. This is 
difficult to verify, but is more likely if 
● random sampling / assignment is used, and 
● if sampling without replacement, n < 10% of the population.



Sample size / skew: Either the population distribution is normal, or if the 
population distribution is skewed, the sample size is large. 
● the more skewed the population distribution, the larger sample size 

we need for the CLT to apply 
● for moderately skewed distributions n > 30 is a widely used rule of 

thumb 
This is also difficult to verify for the population, but we can check it using 
the sample data, and assume that the sample mirrors the population.

CLT - conditions
Certain conditions must be met for the CLT to apply: 

Independence: Sampled observations must be independent. This is 
difficult to verify, but is more likely if 
● random sampling / assignment is used, and 
● if sampling without replacement, n < 10% of the population.


